Strategies For Fuzzy Inference within Classifier Systems
نویسندگان
چکیده
When designing any type of fuzzy rule based system, considerable effort is placed in identifying the correct number of fuzzy sets and the fine tuning of the corresponding membership functions. Once a rule base has been formulated a fuzzy inference strategy must be applied in order to combine grades of membership. Considerable time and effort is spent trying to determine the number of fuzzy sets for a given system while substantially less time is invested in obtaining the most suitable inference strategy. This paper investigates a number of theoretical proven fuzzy inference strategies in order to assess the impact of these strategies on the performance of a fuzzy rule based classifier system. A fuzzy inference framework is proposed, which allows the investigation of five pure theoretical fuzzy inference operators in two real world applications. An additional two novel fuzzy-neural strategies are proposed and a comparative study is undertaken. The results show that the selection of the most suitable inference strategy for a given domain can lead to a significant improvement in performance.
منابع مشابه
Thyroid disorder diagnosis based on Mamdani fuzzy inference system classifier
Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملA Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کامل